
A Review on Software Testing Framework in
Cloud Computing

D.Anitha1 and Dr.M.V.Srinath2
1 Research Scholar, Department Of Computer Science, STET Womens College Mannargudi.

2Director, Department of Computer Applications, STET Womens College, Mannargudi.

Abstract— Cloud computing has emerged as a new
computing paradigm that impacts several different research
fields, including software testing. In cloud computing, the user
can use high end services in form of software that resides on
different server and can be accessed from all over the world.
It not only changes the way of obtaining computing resources
but also alters the way of managing and delivering computing
services, technologies and solutions. Software testing reduces
the need for hardware and software resources and offers a
flexible and efficient cloud platform. Testing in the cloud
platform is effectively supported by engineers based on new
test models and criteria. Prioritization technique is introduced
to provide better relationship between test cases. These test
cases are clustered based on priority level. The resources are
utilized well by implementing load balancing algorithm. Cloud
ensures optimal usage of available resources. However,
security and privacy concerns are considered as a main
obstacle in cloud. This paper surveys various prioritization,
clustering, load balancing and security techniques to enhance
the cloud environment. Moreover, the comparison between
various software testing techniques are demonstrated.

Index Terms—Cloud computing, Cluster, Prioritization,
Privacy, Security, Test cases.

I. INTRODUCTION

loud computing has seized a substantial attention
recently as it changes the way of computation and
services to customers. It is a computing prototype,

where a large pool of systems are connected in private or
public networks. Cloud computing also provides
dynamically scalable infrastructure for application, data
and file storage. Cloud services permits individuals and
businesses to use software and hardware that are managed
by third parties at remote locations. Examples of cloud
services includes,

• Online storage
• Social networking sites
• Webmail
• Online business applications

In presence of network connection, the information
and computer resources can be accessed from anywhere. It
contains a shared pool of resources, including data storage
space, networks, computer processing power, specialized
corporate and user applications. Cloud providers offer
services that are clustered into three categories namely,

1. Software as a Service (SaaS)-Highly scalable
internet based applications, which are introduced
on the cloud.

2. Platform as a Service (Paas) - It contains
considerable potential to help enterprise

developers. It is based on .NET or Java extended
with cloud services.

3. Infrastructure as a Service (Iaas) - It delivers cloud
computing infrastructures, namely, servers,
software, data-center space and network
requirements.

The growth of cloud based services is evident, but
cloud still undergoes development and testing before
deploying. The development of cloud-based services
increases with the need for testing their applications. Cloud
computing provides cost effective and flexible means via
scalable computing power and diverse services. The cloud
computing deployments models are as follows,

1. Private cloud
2. Public cloud
3. Hybrid cloud
4. Community cloud

The third party uses the private cloud and these clouds
are managed by the cloud computing provider. In the public
cloud, the cloud infrastructure is made available to the
general public or owned by the cloud providers. Hybrid
cloud is a combination of two or more general cloud. The
cloud shared by several organization are called as
community cloud. Cloud computing solution depends on
the availability of the infrastructure and the necessary
business applications for their customers.

 The features of cloud computing involves on-demand
self-service, broad network access, resource pooling, rapid
elasticity and measured service. In On-demand self-service,
the customer request and manages their own computing
resources. Broad network access permit services to be
issued over the internet. The customer can use resources
from a pool of computing resources. The need of hardware
and software resources are minimized by the software
testing technique in cloud. Cloud based software testing
refers to testing and measurement activities on a cloud
based environments. It also offers a flexible and efficient
alternative to the traditional software testing process. It has
low entry barriers and reduces cost by leveraging with
computing resources in cloud. The cloud based testing
ensures the quality of the cloud-based applications
deployed in a cloud. It also checks for the automatic
functional services. Testing a cloud refers to the
verification and validation of applications, environments
and infrastructure.

Moreover, software testing techniques are applied to
the cloud environment in order to improve the security
level. Test cases are scheduled and prioritized by
prioritization techniques in order to maximize the scope.

C

D.Anitha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7553-7562

www.ijcsit.com 7553

Software test engineer schedule the test cases in a
sequential order to achieve the code coverage at the fastest
rate. In general, the time needed to run all the test cases in
the test suite is long. The profits obtained through test case
prioritization method becomes more significant. Clustering
models are useful to software service providers to access
their own services to the cloud users. It also helps the
service provider to increase the availability of software
service on the cloud environment. It allows cloud users to
estimate potential software services available on the cloud
computing environment. Load balancing in cloud
environment provides an efficient solution to various issues
residing in cloud set-up and usage. It considers two tasks,
namely resource allocation and task scheduling. It also
ensures that the resources are available based on the
demand. And the resources are effectively used under the
condition of high/low load. This paper presents various
techniques and algorithms that are used to formulate
software testing in cloud platform.

This paper is organized as follows. Section 2 describes
the various test case prioritization, clustering, load
balancing and cloud security techniques. Section 3 deals
with results and discussion. Section 4 provides conclusions.

II. TESTING PLATFORM IN CLOUD COMPUTING

The testing framework in cloud computing involves four
major methods, namely,

1. Test case prioritization
2. Clustering techniques
3. Load balancing scenarios
4. Security Mechanism

A. PRIORITIZATION TECHNIQUES
Prioritization and test case scheduling is done in order

to increase the objective of the function. These techniques
provides a way to schedule and run test cases, which results
in predicting the faults earlier. Some of the prioritization
techniques are Dependency Structure Prioritization (DSP),
Requirement based prioritization, Coverage based
prioritization, Cost effective based prioritization and
Chronographic based prioritization.

1. Dependency Structure Prioritization (DSP)

The dependency structure between test cases is closely
related to the interaction between the parts of the system
[1]. The priority for the test cases is assigned based on
graph coverage value. The graph coverage value of a test
case can be defined as the measurement of the complexities
of the dependent test cases. The graph coverage value of a
test case is measured based on the following ways,

1. The total number of dependents of the test case
2. The longest path of direct and indirect dependents

of the test case.
Using these values, the depth-first search algorithm is used
to calculate the priority of tests. For closed dependency
structures, three ways are used to measure the graph
coverage value. The three coverage measures for paths are

1. The number of non-executed test cases in the path.

2. The ratio of non-executed test cases in the path,
with a higher weighted test cases towards the end
of the path.

3. The number of non-executed test cases divided by
the height of the path.

The DSP sum coverage measure reveals a higher weighted
path comprising of more non-executed test cases. It finds a
balance between longer paths, with few non-executed test
cases. The DSP sum of a path p is defined as follows 									()݉ݑݏ_ܲܵܦ = #ሼ݅ ∈ ሽ (1)(ݐ)݊݁݁ݏ¬|1#
In which the # operator returns the size of a list or set. The
DSP ratio coverage denotes the higher weight to paths that
have higher ratio of non-executed tests. DSP ratio is
calculated by using the below formula 																ܵܦ ܲ௧() = ∑ ௪(௧)#భ # , (2)

(ݐ)ݓ = ൜݅, ,0,(ݐ)݊݁݁ݏ¬	݂݅ ݁ݏ݅ݓݎℎ݁ݐ (3)

The weighted sum of the path is calculated, which gives the
weight of a test case and index of the path [2]. The worst-
case complexity for calculating the DSP ordering is
computed from the following equation. 									ܱ൫|ܸ| + |ܧ| + 2|ଶ|/2൯. |ܸ| + (4) |ܧ|
The time required to calculate as a set of linearly
independent paths in the graph is less. Fault rate detection
is high and decreases the time consumption.

2. Requirement-Based Prioritization Techniques

The weight factors used in the prioritization techniques
are customer priority, requirement complexity and
requirement volatility [3]. The higher factor values denotes
a need for prioritization of test case related to the
requirement. It adjusts the coverage information for
remaining test cases and recursively selects a test case that
yields the greatest coverage of requirement. The test cases
with highest Weight Prioritization WP are executed first.
The weight priority is calculated from the following
formula
 ܲ = (∑ (ܹ݅݅ݓ	݅ |(∑ ݅	ܹ݅) (5)
The factors that affect requirement based prioritization are
time-to-market limitations, number of stakeholders,
implementation cost. It does not consider the dependency
of test cases.

3. Coverage-Based Prioritization Techniques

Test coverage analysis is a degree used in software
testing known as code coverage analysis [4]. It deals with
the amount of source code of program that has been
exercised during the testing process. It is a form of white
box testing, which checks the code directly. The process
involved in coverage-based techniques are described as
follows,

1. Discovering the areas of a program that are not
exercised by a set of test cases.

2. Creation of additional test cases to increase
coverage

3. Determining a quantitative measure of code
4. Identification of redundant test cases

It is a structural white box testing, which compares the test
program behavior with the apparent intention of the source

D.Anitha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7553-7562

www.ijcsit.com 7554

code. The coverage prioritization technique prioritize the
test cases in decreasing order. The weight of the test cases
in decreasing order are determined by the following
equation: 										ܹܶ = ݈݁ܿ݅ܵݍܴ݁ + (6) ݁ݏ݅ܿݎ݁ݔܧݍܴ݁
TW denotes the weight prioritization computed for each
test case. ReqSlice indicates the number of requirements
depicted in the relevant slice of output for each test case.
ReqExercise is a number of requirements exercised by test
case. This technique contains the extra comment line,
which is useless and the fault tolerance is low. It has high
code complexity that means the dependency of the test case
on other test case.

4. Cost Effective-Based Prioritization Techniques

In this technique, the prioritization of test cases are
carried out based on cost analysis [5]. The actual time is
measured for estimating the cost for each test cases. The
following variables are used to prioritize the test cases
where cost of analysis Ca(T) and cost of the prioritization
algorithm, Cp(T).
 ܹܲ = (ܶ)ܽܥ + (7) (ܶ)ܥ
WP is a weight prioritization value for each test case. Ca(T)
includes the cost of source code analysis, Cp(T) is the
actual cost for running a prioritization tool and relies on the
algorithm used. It concentrates only on the cost factor and
does not focus on risk factors.

5. Chronographic history-based Prioritization Techniques

The test cases are prioritized based on the test
execution history [6]. By using historical information of the
test cases and fault severities of the defects, which are
covered by the test cases in a test suite. The historical value
of the test cases is calculated and is used for the basis of the
prioritization of the test cases. Historical value is calculated
from the previous cost and fault severity of the defect,
which are covered by a test case in suite. Weight factor for
the history based prioritization is defined as the 																	ܥݓ = ഢഥഢഥାிௌഢതതതതത (8)

Where ܥపഥ is the mean value of C, relative cost and ܨ పܵതതതത is
the mean value of FS, total relative fault severity. The fault
severity is high and consumes more time.

B. CLUSTERING TECHNIQUES

1. Agglomerative Clustering
Agglomerative hierarchical clustering is a bottom-up

clustering method, where the clusters consists of sub
clusters [7]. It is used in many areas because of its ability to
use arbitrary clustering dissimilarity or distance function. It
is a greedy algorithm that considers a set of points, which
integrates geometric and non-geometric properties. A
binary clustering tree is constructed along with a cluster
dissimilarity function. The data points are initially
considered as clusters of size 1. At, each step, it selects the
best pair of clusters that are not part of a larger clusters and
integrates them into a single larger cluster. The process
repeats until a single cluster containing all the data points is
created.

ܵ)	݁ݒ݅ݐܽݎ݈݁݉݃݃ܽ = ሼݔଵ,…… . , ݇	ݎ݂݉ܽݎ݃ݎ݀݊݁ܦ	ݏ݊ݎݑݐ݁ݎ (ሽݔ = ܥ |ܵ|	ݐ	1 = ሼݔሽ∀, ݂ݎ	݇ = ݉ܽݎ݃ݎ݀݊݁ܦ 1	ݐ	݊ݓ݀|ܵ| = ሼܥଵ,…… . , ,݅)݀ ሽܥ ݆) = ,ܥ൫ܦ ,൯ܥ ∀, ݆; ݈, ݉ = ,ܽ),݀݊݅݉݃ݎܽ ܥ (ܾ = ,ܥ)݊݅ܬ ;(ܥ (ܥ)	݁ݒܴ݉݁
 ݈݀݊݁

The cluster dissimilarity function d (A, B) also called
as the distance function, computes the dissimilarity
between the two clusters. The clusters with smallest value
are chosen and grouped them into a single large cluster [8].
In agglomerative hierarchical clustering the distance are
measured using the following formulas.

• ݀൫ܥ, ൯ܥ = ݉݅݊௫∈,௫ᇲ∈ೕ݀(ݔ, ᇱ) called as singleݔ

linkage, which produces long and skinny clusters.
The clustering can be stopped by setting the
threshold value using the equation.

• ݀൫ܥ, ൯ܥ = ,ݔ)௫∈,௫ᇲ∈ೕ݀ݔܽ݉ ᇱ) termed asݔ

complete linkage and the clusters are compact and
equal in diameter.

• ݀൫ܥ, ൯ܥ = ∑௫∈,௫ᇲ∈ೕௗ൫௫,௫ᇲ൯||.หೕห is used to compute

the distance between two items.
Each agglomeration takes place at a greater distance

between clusters. In this, the smaller clusters are generated,
which are useful for discovery. It produces an ordering of
the objects, which are informative for data display. It has
high flexibility regarding the level of granularity. It can be
applicable to any attribute type and can easily handle any
form of similarity or distance.

2. Cosine Similarity Algorithm

The similarity based clustering is used for grouping the
similar test cases in order to make the testing effective.
Cosine similarity approach is used to form the clusters [9].
In the distributed system clusters are established, which
provides better performance in fault detection. The number
of clusters is less than the number of distributed
environment in order to form the group of the clusters. It is
a measure of similarity between two vectors of an inner
product space. This algorithm measures the cosine of the
angle between the vectors. ݉݅ݏ൫݀, ݀൯ = ,൫݀ݏܿ ݀൯ = ݀௧ ݀ (9)
The similarity of two document vectors	݀, ݀,	݉݅ݏ൫݀, ݀൯
is defined as the cosine of the angle between the vectors.
The inner product is calculated from the above equation for
unit vectors. Cosine measure is used in a variant of k-
means called spherical means [10]. The k-means aims to
reduce the Euclidean distance and spherical k-means
maximizes the cosine similarity between documents in a
cluster and the cluster’s centroid is measured by:

∑ݔܽ݉ ∑ ௗೝ‖ೝ‖ௗ∈௦ೝୀଵ (10)

Cosine similarity is particularly used in positive space,
where the outcome is bounded in [0, 1]

D.Anitha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7553-7562

www.ijcsit.com 7555

ݕݐ݅ݎ݈ܽ݅݉݅ݏ = cos(ߠ) = .‖‖‖‖ = ∑ ∗సభඨ∑ ()మ∗ට∑ ()మసభసభ (11)

The accuracy of this algorithm is low and the computation
cost is high.

3. K-means Clustering

In K-means clustering, the clusters are formed from a
set of objects based upon the squared-error objective
functions:

ܧ = ∑ ∑ | − ݉|ଶ∈ୀଵ (12)
In the above expression, ci are the clusters, p is a point in a
cluster ci and mi the mean of cluster [11]. The mean of the
cluster is denoted by a vector, which contains for each
attribute. The input parameter for the mean values of the
data objects is the number of clusters. It primarily takes the
number of components of the population equal to the
required number of clusters. The required number of
clusters are selected where the points are mutually farthest
apart. It identifies each component in the population and
allocates it to one of the cluster that relies on the maximum
distance. The position of centroid is recalculated every time
and a component is added to the cluster. This process
continues until the components are grouped into the final
required number of clusters. K-means algorithm is highly
sensitive to initial conditions. The issues arises when
clusters are differing from sizes, densities, and non-
globular shapes.

4. Partition-based Clustering
This algorithm is built based on the partition of the

data, where each cluster optimizes a clustering criteria [12].
It also reduces the sum of squared distance from the mean
within each cluster. This algorithm, reduces the clustering
criteria by iteratively relocating the data points between the
clusters until an optimal partition is obtained. The number
of different partition for n observation into k groups is
represented by the following equation, ܵ(݇) = ଵ! ∑ (−1)ିୀୀ ቀ݇݅ቁ ݅ (13)

The complexity of partition clustering is large because it
enumerates all possible groupings and tries to find global
optimum.

C. LOAD DISTRIBUTION SCENARIOS

Load balancing ensures resource utilization by
provisioning of resources to cloud users on demand basis. It
supports prioritizing users by applying appropriate
scheduling criteria.

1. Hierarchical Load Balancing
Hierarchical load balancing involves different levels of

the cloud in load balancing decision [13]. This technique
mostly operates in master slave mode. The tree data
structure is used to model the hierarchical load balancing.
Every node in the tree is balanced under the supervision of
the parent node. The light weight agent process is used by

master to obtain the statistics of the slave nodes or child
nodes. Scheduling decision is made based on the
information gathered by the parent node. Request monitor
acts as a head of the network and is responsible for
monitoring the service, which in turn monitor service
nodes. Nodes at different levels of hierarchy communicate
with the nodes below them to get information about the
network performance.

In hierarchical load balancing, nodes are clustered into
m regions. The nodes within the same region are known as
local nodes. Nodes that have link to another regions are
called as gateways. The regions are called as neighbors,
when there is one or two links between nodes in the two
regions. Each node in the network are uniquely identified
by two identifiers called i and j. Identifier (i) denotes the
region to which the node belongs and identifier j indicates
the nodes present in the region i. Every node in the
hierarchical load balancing comprises of routing table [14].
The routing table of each process p [i, j] consists of two
small tables named prs (proximity route selection) and rgn
(routing group name). The rgn table determines the
preferred neighbor for a destination process, whose region
is other than i. The prs table identifies the preferred
neighbor for a destination process whose region is i.

• prs is a local routing table with n entries,
where n is the maximum number of nodes in
the local region. Each entry j denotes the cost
of the path to the local node j and a preferred
neighbor node along the path.

• rgn is a global routing table with m entries, in
which m is the maximum number of regions
in the network. Each entry contains the cost of
the path to a destination region and a
preferred neighbor node along the path to the
destination region.

When a job request comes, the scheduler initializes job
parameters and finds the Expected computing power, ECP
for each job using the below equation 																	ܥܧ ܲ = ∑ ݀݁݁ݏܷܲܥ ௧ୀଵ⁄ݐ (14)
It is useful in medium or large size network with
heterogeneous environment.
2. Static Load Balancing

In static environment, the cloud provider installs
homogeneous resources [15]. When the environment is
made static, the resources in the cloud are not flexible. In
this scenario, the cloud requires prior knowledge of nodes
capacity, processing power, memory performance and
statistics of user requirements. The user requirements are
not subjected to any change during the run-time. Static
load balancing algorithms defines the task to the node
based on the ability of the node to process new requests.
The process is based on prior knowledge of the nodes’
properties and capabilities. It also includes nodes’
processing power, memory and storage capacity. Round
robin algorithm provide a load balancing in static
environment. It is not highly flexible and not scalable.
3. Dynamic Load Balancing

In dynamic environment the cloud provider installs the
heterogeneous resources [16]. In dynamic environment the
resources are flexible and does not rely on the prior

D.Anitha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7553-7562

www.ijcsit.com 7556

knowledge by considering run-time statistics. The dynamic
load balancing algorithms includes different attributes of
nodes’ capabilities and network bandwidth. The algorithm
is a combination of prior gathered information about the
nodes in the cloud. Based on the attribute gathered, the
algorithm assigns and reassigns the task to the nodes
dynamically. In the distributed system, the load decision is
made based on computation of current load in every node.
It selects the node with the minimum value of counter
variable to the nodes and assign the application request to
the selected node. This type of load balancing is complex
and time consuming.
4. Centralized Load Balancing

In this technique, the allocation and scheduling
decisions are made by a single node [17]. This node is
responsible for storing the knowledge based on entire cloud
network. It can be applied to static or dynamic approach for
load balancing. The server or single node maintains the
statistics of the entire network and updation takes place
regularly. Centralized load balancing needs few message to
achieve load balancing within system. It comprises of one
centralized node CS, which acknowledges the incoming
jobs. Each job has its arrival time and processing
requirements associated with it. It is highly overloaded and
has low fault tolerant capacity.
5. Distributed Load Balancing

In distributed load balancing, no single node is
responsible for making resource provisioning or task
scheduling decision [18]. The multiple domain monitors the
network to make accurate load balancing decision. In static
environment, every node in the network maintains the local
knowledge to assure an efficient distribution of tasks
whereas the re-distribution takes place in dynamic
environment. Honey bee foraging is a self-organizing
algorithm, which data structure for the implementation. In
the network, all the processors store the own local database.
The algorithm used in distributed load balancing are highly
complex. The communication overhead is high in the
distributed load balancing.

D. SECURITY MECHANISM

1. Diffie-Hellman Algorithm
This algorithm enables each party to generate a shared

secret key for encryption and decryption of data [19]. It
removes the need of transferring keys between two
communicating parties. It arranges all group members in a
logic ring or a binary tree and to exchange DH public keys.
The random parameters generates a new shared keys for
each message that is exchanged between sender and
receiver. It is a cryptographic protocol, which establishes a
shared secret key over an insecure communication channel
by permitting the two parties that have no prior knowledge
of each other [20]. This key is used to encrypt subsequent
communications using a symmetric key cipher. The
following steps describes a DH exchange

Step 1: Alice and Bob agree on generator g and
module p.

Step 2: Alice selects a random large integer XA and
sends Bob its public value YA, where YA=gx(A) mod
p.
Step 3: Bob selects a random large integer XB and
sends Alice his public value YB, where YB=gx(B)
mod p.
Step 4: Alice computes k= YB

x(A) mod p.
Step 5: Bob computes k’= YA

x(B) mod p.
Step 6: Both k and k’ are equal to gx(A) x(B) mod p.
It is used in interactive transaction rather than a batch

transfer from a sender to receiver. It is used in many
protocols, namely Secure Socket Layer, Secure Shell,
Internet Protocol Security and Public Key Infrastructure.
2. Wang’s approach

This approach deals with the security issues in cloud
[21]. It provides data access procedure, which is based on
owner- write user read scenario. In this approach end user
sends a request to access the data to the data owner then the
data owner sends an encryption key and access certificate
to user, user sends the access certificate to storage provider
and the storage provider sends the encrypted detail to the
end user. It requires support from the cloud side and no
multiple policies combination are used.

3. Data Encryption Standard (DES) algorithm

DES structure has a 64-bit block size and uses a 56 bit
key during execution [22]. The key actually looks like a 64
bit quantity, but one bit in each of the octets is used for odd
parity on each octet. For decryption the same algorithm is
used, but the order of sub keys is reversed. It can process
with an initial permutation, 16 rounds block cipher and
final permutation. The application of the DES algorithm is
very widespread in military, commercial, and other
domains. Even though, this algorithm is public and the
design issues used are classified. It has some drawbacks
particularly in the selection of 56 bit key algorithm as it can
be vulnerable to brute force attacks. In order to improve
this, 2DES and 3DES algorithms are developed.

4. Advanced Encryption Standard (AES)
AES acts as a substitution-permutation network based

on a design principle [23]. It operates on a 4x4 column-
major order matrix of bytes and the matrix computations
are carried out in a special finite field. The final output of
cipher text is obtained by a number of repetitive
transformation called as AES cipher. The number of cyclic
repetition are described as follows,

• 10 cycles of repetition for 128 bit keys
• 12 cycles of repetition for 192 bit keys
• 14 cycles of repetition for 256 bit keys

Each round of encryption process requires the
following four types of operations: SubBytes, ShiftRows,
MixColumns, XorRoundKey. Decryption is the reverse
process of encryption and using inverse functions:
InvSubBytes, InvShiftRows, InvMixColumns. The major
demerits of this algorithm is that it requires more round of
communication as compared with shared key mechanism.

D.Anitha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7553-7562

www.ijcsit.com 7557

5. Triple DES (3DES)
The 3DES algorithm is essential for the replacement of

DES algorithm due to its improvement on key searching
[24]. It has three round message. It provides strongest
encryption algorithm, since it is harder to break the 2^168
possible arrangements. It reduces the memory requirements
among the keys. The major drawback of this algorithm is
too time consuming.

TABLE 1 INFORMATION ABOUT DIFFERENT ENCRYPTION
ALGORITHMS

Factors AES 3DES DES

Key Length
128, 192, or 256
bits

168 and 112 bits 56 bits

Cipher Type
Symmetric block
cipher

Symmetric
block cipher

Symmetric
block cipher

Block size
128, 192, or 256
bits

64 bits 64 bits

Developed 2000 1978 1977

Security Considered secure
Secured, but exit
in DES

Proven
inadequate

III. RESULTS AND DISCUSSION

Various techniques for software testing in cloud platform
are discussed. The results of the survey are shown in Table
2. Test case prioritization techniques effectively schedules,
run the test cases and also predicts the fault earlier. From
the survey, it is proven that the dependency structure
prioritization reduces the fault at low cost than the existing
techniques. The test cases are clustered effectively by
agglomerative clustering, which is easy to handle and
applicable to any type of attribute. Hierarchical Load
balancing ensures better resource utilization than the other
scenarios such as static, dynamic, centralized and
distributed. Moreover, the surveyed results evidently shows
that the security of the cloud is enhanced by using Diffie-
Hellman algorithm.

TABLE 2 INFORMATION ABOUT SOFTWARE TESTING TECHNIQUES IN CLOUD PLATFORM

Techniques Author & Reference Year Performance Quality Measurement

Test Case Prioritization Techniques

Dependency Structure
Prioritization

Zhang, et al [25] 2014
Every dependency test is
reported and based on the
report test case is reordered.

1. Detected dependency test
2. Cost analysis

Haidry and Miller [1] 2013
It uses dependency
information from a test suite
to prioritize that test suite.

1. Artifact
2. Testing type
3. Lines of code
4. Functions
5. Faults
6. Tests
7. Dependencies
8. Graph density
9. Unconnected tests
10. Maximum depth

Requirement-Based
Prioritization Technique

Berander and
Andrews [26]

2005
It considers different aspects,
techniques and stakeholders
situation.

1. Requirement
2. Cost
3. Time
4. Risk
5. volatility

Lehtola, et al [27] 2004
It requires complex context-
specific decision making and
performed iteratively.

1. priority list of local areas
2. prioritization scales
3. Negotiation in meetings

Coverage-Based
Prioritization Techniques

Mohanty, et al [4] 2011
It generates a set of tests in
orders and pair-wise
interactions are tested.

1. Weight covered in each row using
unweighted and weighted density

2. Cumulative weight covered
3. Size of test suites
4. Percentage of pairs involved

Bryce, et al [28] 2011
It reduces test suites by using
tests that provide coverage of
the requirement.

1. Order suite function
2. Weighted frequency
3. Best and worst case criteria for

prioritization
4. Fault detection

Cost Effective-Based
Prioritization Techniques

Malishevsky, et al
[29]

2006
It permits practitioners to
perform prioritization by
considering the cost.

1. Test suite executed
2. Total test case cost incurred
3. Evaluating fault severities

Chronographic history-
based Prioritization
Techniques

Lin, et al [30] 2013
It considers both source code
information and historical
fault data.

1. Test case
2. Fault detection
3. Fault-prone test cases
4. Repeated fault detection

Park, et al [6] 2008

It is based on the use of
historical information to
estimate the cost and fault
severity

1. Relative cost
2. Total fault severities
3. Relative fault severity

D.Anitha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7553-7562

www.ijcsit.com 7558

Techniques Author & Reference Year Performance Quality Measurement

Clustering Algorithm

Agglomerative
Clustering

Shalom and Dash
[32]

2014

It generates high level
multiple partitions in a given
dataset.

1. Half distance matrix computation
2. Computational time

Srivastava, et al [31] 2013
It increases efficiency by
executing the task in parallel
and suitable for large data set.

1. Number of nodes
2. Clustering analysis

Davidson and Ravi
[8]

2005
It can cause the dendogram to
stop prematurely in a dead-
end solution.

1. Data set
2. Unconstrained
3. Constrained

Cosine Similarity
Algorithm

Hayes and Avesani
[33]

2007

The similarity based clustering
is used for grouping the test
cases in order to make testing
effective.

1. Mean fraction of a cluster
2. Queries generated

Basu, et al [34] 2004
It can be parameterized using
a symmetric positive definite
matrix.

1. Cluster selection
2. Pairwise supervision

K-means Clustering

Liu, et al [35] 2013

It initially takes the number of
components of the population
equal to the final required
number of clusters.

1. Various clusters
2. Dataset sizes
3. Overhead at the server side

Peters [36] 2006

It classifies the group of
objects based on attributes or
features into k numbers of
group.

1. Initial cluster assignment
2. Number of objects in the boundary area

Zhao, et al [37] 2009
In each iteration it needs a
total number of distance
computations.

1. Speedup
2. Scale up
3. Size up

Partition-based
Clustering

Hu, et al [38] 2006
This algorithm is efficient for
large class hierarchies and the
time complexity is O(n2)

1. Labeling blocks
2. Partitioning
3. Matching block

Salzbrunn [39] 2008

It partitions the whole domain
according to certain
characteristics which are
based on vector values.

1. Hedgehog representation of the flow.

Load Balancing Scenarios

Hierarchical Load
Balancing

Han and
Chronopoulos

2013
It reduces the communication
time by loop scheduling.

1. Total execution time for quick sort
2. Total execution for matrix

multiplication

Zheng, et al [13] 2010

It divides the processors into
independent autonomous
group and organize the group
in a hierarchy manner

1. Memory usage
2. Computation of time

Static Load Balancing

Penmatsa and
Chronopoulos [15]

2011

In this scenario, the cloud
requires prior knowledge of
nodes capacity, processing
power, memory performance
and statistics of user
requirements.

1. Expected response time
2. Fairness index
3. System utilization

Pan, et al [40] 2007

Static load balancing
algorithms assign the task to
the node based on the ability
of the node to process new

requests.

1. Speedup
2. Efficiency of thread

Dynamic Load
Balancing

Dhakal, et al [41] 2007

These are executed by
considering the average
completion time per task and
the processing rate in presence
of external loads.

1. Number of tasks
2. Mean delay
3. The amount of load transferred

between nodes.

Chieu, et al [42] 2009
It allows system to
automatically and dynamically
add new web server instances.

1. Utilization rates
2. Low power usage cost
3. Average response time

D.Anitha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7553-7562

www.ijcsit.com 7559

Techniques Author & Reference Year Performance Quality Measurement

Centralized Load
Balancing

Saxena and sharma
[43]

2011

In this, single node or server is
responsible for maintaining
the statistics of entire network
and updating it from time to
time.

1. Load matrix
2. Capability matrix

Azzoni and Down
[44]

2009
Centralized load balancing
needs few message to achieve
load balancing within system.

1. Average task completion time
2. Number of message exchange.

Distributed Load
Balancing

Berebbrink, et al [45] 2007

In this, no single node is
responsible for making
resource provisioning or task
scheduling decision.

1. Upper bounds on convergence time
2. Lower bound

Menon and Kale [46] 2013
The multiple domain monitors
the network to make accurate
load balancing decision.

1. Load of under loaded processors
2. Probabilities assigned to each of the

processors
3. Transfers received

Security Mechanism in Cloud Environment

Diffie-Hellman
algorithm

Tirthani and Ganesan
[20]

2014

It agrees on a key that two
parties can use for a
symmetric encryption, in such
a way that an attacker obtain
the key.

1. Computation of point on the curve
2. Integer factorization
3. Key generation
4. Decryption

Liu, et al [47] 2013

This information is used to
build and design secure and
efficient versions of the
classic key agreement
protocol.

1. Server Instances involved
2. Data Block Size
3. Encryption time
4. Exchange time
5. Key Exchange

Data Encryption
Standard (DES)
algorithm

Liao and Chao [48] 2008

It diffuses the encipherment
transformation over the whole
64-bit cipher text within the
16 substitution and
transposition rounds

1. Successful rate under toleration
distance

Benabdellah, et al
[49]

2007
It can process with an initial
permutation, 16 rounds block
cipher and final permutation

1. Computation time
2. Compression ratio

Advanced Encryption
Standard (AES)

Trang and Loi [50] 2012
It operates on a 128-bit block
of data and executed Nr-1
loop times.

1. Timing simulation

Yen and Wu [51] 2006
The data procedure is the main
body of the encryption and
consists of four operations.

1. Percentage of undetectable errors.
2. Error detection capability

Triple DES (3DES)

Ghosal, et al [52] 2010
It is a block cipher operating
on 64-bit data blocks.

1. Logic utilization
2. Number of slice registers

Antonios, et al [53] 2006

It increases the length of the
used key since two or three
keys are applied depending on
which mode of operation is
used.

1. Number of slices
2. Minimum period

IV. PROPOSED WORK

The proposed testing framework in cloud computing
will use Dependency Structure priority to prioritize the test
cases and these prioritized test cases are clustered using
Agglomerative clustering technique. Hierarchical load
balancing mechanism will be applied to utilize the
resources. In order to provide a secured cloud environment
Diffie-Hellman algorithm will be applied.

V. CONCLUSION

In this paper, an overview of software techniques in
cloud computing platform are depicted. From the survey, it
proves that the Dependency Structure Prioritization (DSP)
are very powerful to prioritize the test cases. It minimizes
the time consumption and increases the fault rate

prediction. The test cases are clustered using the
agglomerative clustering, which provides high flexibility in
the level of granularity. The resources are well-utilized
based on Hierarchical load balancing algorithm. It can be
applied in medium or large size cloud environment. The
security of the cloud is enhanced by the Diffie-Hellman
algorithm. An enhanced testing framework in cloud
platform can be achieved by using the DSP, agglomerative
clustering, Hierarchical load balancing and Diffie-Hellman
techniques.

REFERENCES
[1] S. Haidry and T. Miller, "Using dependency structures for

prioritization of functional test suites," Software Engineering,
IEEE Transactions on, vol. 39, pp. 258-275, 2013.

[2] Gurdiksha and J. Singh, "Approaches used for prioritization of
Test Suites," IJSER, vol. 2, 2014.

D.Anitha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7553-7562

www.ijcsit.com 7560

[3] P. Berander and A. Andrews, "Requirements prioritization," in
Engineering and managing software requirements, ed:
Springer, 2005, pp. 69-94.

[4] S. Mohanty, A. A. Acharya, and D. P. Mohapatra, "A survey
on model based test case prioritization," International Journal
of Computer Science and Information Technologies, vol. 2, pp.
1042-1047, 2011.

[5] Karambir and R. Rani, "Prioritize Test Case Survey for
Component-Based Software Testing," ijarcsse, vol. 3, 2013.

[6] H. Park, H. Ryu, and J. Baik, "Historical value-based approach
for cost-cognizant test case prioritization to improve the
effectiveness of regression testing," in Secure System
Integration and Reliability Improvement, 2008. SSIRI'08.
Second International Conference on, 2008, pp. 39-46.

[7] R. G. Pensa, D. Ienco, and R. Meo, "Hierarchical co-clustering:
off-line and incremental approaches," Data Mining and
Knowledge Discovery, vol. 28, pp. 31-64, 2014.

[8] I. Davidson and S. Ravi, "Agglomerative hierarchical
clustering with constraints: Theoretical and empirical results,"
in Knowledge Discovery in Databases: PKDD 2005, ed:
Springer, 2005, pp. 59-70.

[9] C. S. Rao and P. S. P. Rao, "A Novel Cosine Similarity Based
Clustering Mechanism," 2012.

[10] G. S. Reddy and R. Krishnaiah, "Clustering algorithm with a
novel similarity measure," IOSR Journal of Computer
Engineering (IOSRJCE). v4 i6, pp. 37-42, 2012.

[11] K. A. Nazeer and M. Sebastian, "Improving the Accuracy and
Efficiency of the k-means Clustering Algorithm," in
Proceedings of the World Congress on Engineering, 2009, pp.
1-3.

[12] A. K. Upadhyay and A. Misra, "Prioritizing Test Suites Using
Clustering Approach in Software Testing."

[13] G. Zheng, E. Meneses, A. Bhatele, and L. V. Kale,
"Hierarchical load balancing for Charm++ applications on
large supercomputers," in Parallel Processing Workshops
(ICPPW), 2010 39th International Conference on, 2010, pp.
436-444.

[14] M. Katyal and A. Mishra, "A Comparative Study of Load
Balancing Algorithms in Cloud Computing Environment,"
International Journal of Distributed and Cloud Computing,
vol. 1, pp. 5-14, 2013.

[15] S. Penmatsa and A. T. Chronopoulos, "Game-theoretic static
load balancing for distributed systems," Journal of Parallel
and Distributed Computing, vol. 71, pp. 537-555, 2011.

[16] N. Haryani and D. Jagli, "Dynamic Method for Load Balancing
in Cloud Computing," IOSR Journal of Computer Engineering
(IOSRJCE). v4 i6, vol. 16, pp. 23-28, 2014.

[17] K. A. Nuaimi, N. Mohamed, M. A. Nuaimi, and J. Al-Jaroodi,
"A survey of load balancing in cloud computing: Challenges
and algorithms," in Network Cloud Computing and
Applications (NCCA), 2012 Second Symposium on, 2012, pp.
137-142.

[18] M. Randles, D. Lamb, and Taleb-Bebdiab, "A Comparative
Study into Distributed Load Balancing Algorithms for Cloud
Computing," IEEE, 2010.

[19] L. Harn and C. Lin, "Efficient group Diffie–Hellman key
agreement protocols," Computers & Electrical Engineering,
2014.

[20] N. Tirthani and R. Ganesan, "Data Security in Cloud
Architecture Based on Diffie Hellman and Elliptical Curve
Cryptography," IACR Cryptology ePrint Archive, vol. 2014, p.
49, 2014.

[21] R. R. Sadul, N. Subhekar, A. Rankhambe, S. Shaikh, and
Mokashi, "A Survey of Different Encryption Techniques for
Secure Cloud Storage," MJRET, vol. 1, pp. 59-65, 2014.

[22] J. Thakur and N. Kumar, "DES, AES and Blowfish: Symmetric
key cryptography algorithms simulation based performance
analysis," International journal of emerging technology and
advanced engineering, vol. 1, pp. 6-12, 2011.

[23] N. Singhal and J. Raina, "Comparative analysis of AES and
RC4 algorithms for better utilization," International Journal of
Computer Trends and Technology, vol. 79, pp. 177-181, 2011.

[24] F. Antonios, P. Nikolaos, M. Panagiotis, and A. Emmanouel,
"Hardware Implementation of Triple-DES

Encryption/Decryption Algorithm," in International
Conference on Telecommunications and Multimedia, 2006.

[25] S. Zhang, D. Jalali, J. Wuttke, K. Muslu, W. Lam, M. Ernst, et
al., "Empirically revisiting the test independence assumption,"
University of Washington Technical Report UW-CSE-14-01-
01. Available at: http://homes. cs. washington. edu/~

szhang/pdf/testdependence. pdf, 2014.
[26] P. Berander and A. Andrews, "Requirements prioritization," in

Engineering and managing software requirements, ed:
Springer, 2005, pp. 69-94.

[27] Lehtola, M. Kauppinen, and S. Kujala, "Requirements
prioritization challenges in practice," in Product focused
software process improvement, ed: Springer, 2004, pp. 497-508

[28] R. C. Bryce, S. Sampath, and A. M. Memon, "Developing a
single model and test prioritization strategies for event-driven
software," Software Engineering, IEEE Transactions on, vol.
37, pp. 48-64, 2011.

[29] A. G. Malishevsky, J. R. Ruthruff, G. Rothermel, and S.
Elbaum, "Cost-cognizant test case prioritization," Department
of Computer Science and Engineering, University of Nebraska-
Lincoln, Techical Report, 2006.

[30] C.-T. Lin, C.-D. Chen, C.-S. Tsai, and G. M. Kapfhammer,
"History-based Test Case Prioritization with Software Version
Awareness," in Engineering of Complex Computer Systems
(ICECCS), 2013 18th International Conference on, 2013, pp.
171-172.

 [31] K. Srivastava, R. Shah, D. Valia, and H. Swaminarayan, "Data
Mining Using Hierarchical Agglomerative Clustering
Algorithm in Distributed Cloud Computing Environment,"
International Journal of Computer Theory & Engineering, vol.
5, 2013.

 [32] A. Shalom and M. Dash, "Parallel Computations for
Hierarchical Agglomerative Clustering using CUDA," 2014.

[33] C. Hayes, "Using tags and clustering to identify topic-relevant
blogs," 2007.

[34] S. Basu, M. Bilenko, and R. J. Mooney, "A probabilistic
framework for semi-supervised clustering," in Proceedings of
the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2004, pp. 59-68.

[35] R. Liu, P. Mordohai, W. H. Wang, H. Xiong, R. Liu, H. W.
Wang, et al., "Integrity Verification of K-means Clustering
Outsourced to Infrastructure as a Service (IaaS) Providers," in
SDM, 2013, pp. 632-640.

[36] . Peters, "Some refinements of rough k-means clustering,"
Pattern Recognition, vol. 39, pp. 1481-1491, 2006.

[37] W. Zhao, H. Ma, and Q. He, "Parallel k-means clustering based
on mapreduce," in Cloud Computing, ed: Springer, 2009, pp.
674-679.

[38] W. Hu, Y. Zhao, and Y. Qu, "Partition-based block matching
of large class hierarchies," in The Semantic Web–ASWC 2006,
ed: Springer, 2006, pp. 72-83.

[39] T. Salzbrunn, H. Jänicke, T. Wischgoll, and G. Scheuermann,
"The State of the Art in Flow Visualization: Partition-Based
Techniques," in SimVis, 2008, pp. 75-92.

[40] Y. Pan, W. Lu, Y. Zhang, and K. Chiu, "A static load-
balancing scheme for parallel XML parsing on multicore
CPUs," in Cluster Computing and the Grid, 2007. CCGRID
2007. Seventh IEEE International Symposium on, 2007, pp.
351-362.

[41] S. Dhakal, M. M. Hayat, J. E. Pezoa, C. Yang, and D. A.
Bader, "Dynamic load balancing in distributed systems in the
presence of delays: A regeneration-theory approach," Parallel
and Distributed Systems, IEEE Transactions on, vol. 18, pp.
485-497, 2007

[42] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal,
"Dynamic scaling of web applications in a virtualized cloud
computing environment," in e-Business Engineering, 2009.
ICEBE'09. IEEE International Conference on, 2009, pp. 281-
286.

[43] A. B. Saxena and D. Sharma, "Analysis of threshold based
centralized load balancing policy for heterogeneous machines,"
International Journal of Advanced Information Technology
(IJAIT), vol. 1, 2011.

[44] I. Al-Azzoni and D. G. Down, "Decentralized load balancing
for heterogeneous grids," in Future Computing, Service

D.Anitha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7553-7562

www.ijcsit.com 7561

Computation, Cognitive, Adaptive, Content, Patterns, 2009.
COMPUTATIONWORLD'09. Computation World:, 2009, pp.
545-550.

[45] P. Berenbrink, T. Friedetzky, L. A. Goldberg, P. W. Goldberg,
Z. Hu, and R. Martin, "Distributed selfish load balancing,"
SIAM Journal on Computing, vol. 37, pp. 1163-1181, 2007.

[46] H. Menon and L. Kalé, "A distributed dynamic load balancer
for iterative applications," in Proceedings of SC13:
International Conference for High Performance Computing,
Networking, Storage and Analysis, 2013, p. 15.

[47] C. Liu, X. Zhang, C. Yang, and J. Chen, "CCBKE—Session
key negotiation for fast and secure scheduling of scientific
applications in cloud computing," Future Generation
Computer Systems, vol. 29, pp. 1300-1308, 2013.

[48] H.-C. Liao and Y.-H. Chao, "A new data encryption algorithm
based on the location of mobile users," Information Technology
Journal, vol. 7, pp. 63-69, 2008.

[49] M. Benabdellah, N. Zahid, F. Regragui, and E. H. Bouyakhf,
"Encryption-Compression of Echographic images using FMT
transform and DES algorithm," INFOCOM International
Journal, papier accepté en Mars, 2007.

[50] T. Hoang, "An efficient FPGA implementation of the
Advanced Encryption Standard algorithm," in Computing and
Communication Technologies, Research, Innovation, and
Vision for the Future (RIVF), 2012 IEEE RIVF International
Conference on, 2012, pp. 1-4.

[51] C.-H. Yen and B.-F. Wu, "Simple error detection methods for
hardware implementation of advanced encryption standard,"
Computers, IEEE Transactions on, vol. 55, pp. 720-731, 2006.

[52] P. Ghosal, M. Biswas, and M. Biswas, "A Compact FPGA
Implementation of Triple-DES Encryption System with IP
Core Generation and On-Chip Verification," in Proceding of
the 2010 International Conference on Industrial Engineering
and Operation Management, Dhaka, Bangladesh, 2010.

[53] F. Antonios, P. Nikolaos, M. Panagiotis, and A. Emmanouel,
"Hardware Implementation of Triple-DES
Encryption/Decryption Algorithm," in International
Conference on Telecommunications and Multimedia, 2006.

D.Anitha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7553-7562

www.ijcsit.com 7562

